
 
 

 

  

Abstract— In this paper we present a parallel evolutionary 
multi-objective methodology for granularity and rule-based 
learning for Mamdani Fuzzy Systems. The proposed 
methodology produces a set of solutions with different trade-off 
between accuracy and interpretability, based on searching the 
number of labels and the fuzzy rules, and also makes a variable 
selection. This process is achieved by exploiting present parallel 
computer systems allowing it to deal with more complex 
models. 

I. INTRODUCTION 

HE main objective in system modeling is to develop 
reliable and understandable models. Interpretability and 

accuracy are usually contradictory requirements in the 
design of linguistic fuzzy models (FMs). Recent research on 
genetic fuzzy systems [1] has focused on methods aimed at 
generating fuzzy rule-based systems (FRBS) with an 
appropriate trade-off between accuracy and interpretability 
[2], [3]. 

Recently, Multi-objective Evolutionary Algorithms 
(MOEAs) has been used to improve the aforementioned 
trade-off between interpretability and accuracy of linguistic 
fuzzy systems [4] - [10]. Some of them achieve the Pareto 
(the set of non-dominated solutions with different trade-off) 
by selecting [9], [10] the set of rules best representing the 
example data, i.e., providing a set of solutions with different 
balance between the complexity of the fuzzy rule base (RB) 
and system accuracy. 

On the other hand, there are many works devoted to the 
design of different elements of fuzzy systems, such as the 
derivation of the linguistic RB [11] - [15], the tuning of the 
meanings of the linguistic values used in the rules [16], [17],  
the learning of the number of the labels for each variable 
(granularity) [18], [19], and the setup of the inference system 
[20] - [22] and defuzzification method [23] between others, 
or the combination of some of these techniques [24], [25]. 
However the combination of different elements increases the 
search space, in particular when we deal with complex 
models with large data sets. The effect produced by the size 
of the data in the algorithms is called the scaling problem. 

Taking the foregoing into account, in this work, we 
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present a simple evolutionary multi-objective methodology 
which aims to learn the granularity and the RB, but which 
also has the capability to reduce the number of variables 
concerned. The evolutionary methodology proposed 
generates a set of FRBSs with different optimal trade-off 
between accuracy and interpretability. The problem search 
space is composed of all the possible combinations of 
granularities for the involved variables and all their 
associated RBs, which is a huge search space especially if 
there are a lot of variables. We exploit the power of parallel 
systems to deal with the scaling problem. Nowadays, the use 
of a collection of computers to achieve a greater amount of 
computational resources has become more popular as they 
are much more cost-effective than single computers of 
comparable speed. The proposed methodology deals with 
large search spaces and large data sets, taking advantage of 
this type of computer clusters or multi-core processor 
technology in a simple way, obtaining good quality practical 
results. 

In order to explain how this is achieved, Section II 
describes the proposed model, Section III shows the 
experimental study developed, and finally Section IV 
presents some concluding remarks. 

II. PROPOSED MODEL 

This section describes the parallel methodology proposed 
in this work. First, we explain the global mechanism and 
afterwards, two subsections depict the Central and 
Subordinate Nodes respectively. 

In [19], the influence of fuzzy partition granularity in 
FRBSs performance was studied, showing that the use of an 
appropriate number of linguistic terms for each variable 
influences the accuracy of the model. On the other hand, the 
interpretability [2] is influenced by several factors: the 
number of terms (the fewer, the better); the number of 
variables involved (as it is sometimes possible to have a 
model with few variables that is still accurate); and 
additionally the number of rules (since a compact RB is 
preferable in order to achieve a more interpretable system). 

As mentioned above, the proposed model includes the 
learning of the granularity, the RB and variable selection. In 
fact, the RB depends on the labels chosen for each involved 
variable. Thus, the proposed methodology performs a main 
search of the granularity and variable selection, and carries 
out a subordinate search of the associated RB for each 
granularity combination candidate in the main search 
process.  
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In short, the model proposed consists of a multi-objective 
algorithm designed to find a set of granularity combinations 
of the variables, and then perform a simple subordinate 
parallel search to find a compact RB for the proposed 
granularity.  

This is implemented using a node that performs the multi-
objective algorithm. This node is a single unit which we 
have named the Central Node, and connects to a set of 
subsidiary nodes that perform the parallel search, and which 
we have named Subordinate Nodes.  

The search space for the granularity is not huge, while the 
subordinate search in the parallel nodes is expensive in terms 
of computational cost, and it is achieved in parallel form. 
Communication times are somewhat slower than subordinate 
search processes, so the model can operate with parallel 
computing resources without considerable drawbacks. 

A. Central Node: Multi-objective Schema 
As we mentioned above, the Central Node performs a 

multi-objective search in order to find the granularity of the 
variables. The number of labels for each variable is limited 
in order to avoid higher values that may negatively influence 
interpretability; this has the added benefit of reducing the 
search space.  

The variable selection is implemented through the 
granularity mechanism: we let the null value pay no 
attention to the variable concerned. 

The multi-objective schema has been implemented using 
one of the most representative second generation MOEA: 
the NSGA-II [26]. It is one of the most well-known and 
frequently-used MOEAs for general multi-objective 
optimization in the literature. It is a parameterless approach 
with many interesting principles: a binary tournament 
selection based on a fast non-dominated sorting, an elitist 
strategy and a crowding distance method to estimate the 
diversity of a solution. A fuller description may be found in 
[26]. 

The coding scheme used in the Central Node is the one 
shown in Fig. 1. Every chromosome of the multi-objective 
algorithm encodes the number of linguistic labels for each 
variable. More specifically, each chromosome has got as 
many genes as the problem has variables. Hence, genes are 
integer values that indicate the number of linguistic terms of 
their respective variables, likewise for antecedents and 
consequents, as can be seen in Fig.1. The minimum and 
maximum number of linguistic terms that each variable may 
have is predetermined, and they are uniformly distributed in 
the universe of the variable.  

Genes in Central Node are randomly initiated to a value 
between the predetermined minimum and maximum values. 
Value “0” indicates that the variable represented by this gene 
can be ignored. The way it performs the variable selection is 
given below. 

The two objectives considered by the MOEA are the error 
(as a measure of accuracy) and the number of rules (as a 
measure of interpretability) of the RB obtained. 

 

 
 

Fig. 1.  MOEA chromosome coding 

B. Subordinate Nodes: Rule-based Learning 
The parallel Subordinate Nodes receive the number of 

linguistic terms for each variable and perform the search for 
the RBs, returning to the Central Node the RB and its 
accuracy computed with the training dataset.  

A large number of methods have been proposed to 
automatically generate fuzzy rules from numerical data. 
Usually, they use complex rule generation mechanisms such 
as neural networks [27], [28] or genetic algorithms (GAs) 
[29]. In contrast to these, a family of efficient methods 
guided by covering criteria of the data in the example set, 
called ad hoc data-driven methods, has been proposed in the 
literature [12], [30]–[32].  

These methods are suitable for use with the linguistic RB 
learning in the Subordinate Nodes. However, we have 
chosen to use those based on ad-hoc data driven methods for 
their efficiency and simplicity. Specifically, we propose 
using the COR [11] methodology because it manages a set 
of consequent labels (one set per rule), and instead of 
selecting the consequent with the highest performance in 
each subspace as usual (Wang and Mendel, WM [12]), 
considers the possibility of using another consequent, 
different from the best one, when the alternative confers 
greater accuracy on the FRBS thanks to having a RB with 
best cooperation. For this purpose, COR performs a 
combinatorial search among the candidate rules looking for 
the set of consequents which globally achieves the best 
accuracy. 

COR consists of two stages: 
1) Search space construction—It obtains a set of 
candidate consequents for each rule. 
2) Selection of the most cooperative fuzzy rule set—It 
performs a combinatorial search among these sets 
looking for the combination of consequents with the 
best global accuracy. 

In order to perform this combinatorial search, an explicit 
enumeration or an approximate search technique can be 
considered.  In this work, we use a generational GA as the 
search technique for its effectiveness. 

The coding scheme used to encode COR, is an integer 
string of N genes, each one representing a candidate rule 
consequent of the initial RB. Additionally, to obtain 
solutions with higher interpretability, we allow a value 
“don’t care” into the set of consequents. Thus, if this value is 
selected, the rule is eliminated, effectively performing a rule 
selection mechanism. 



 
 

 

Regarding the Subordinate Node, this uses three stages: 
first, it generates the RB using a WM algorithm as, in the 
next step, COR needs this information; second, COR 
algorithm obtains the rules with the best cooperation; and 
third, it computes the accuracy over the training data set, and 
sends the results to the Central Node.  

The coding scheme used to encode COR depends on the 
number of rules found by WM.  

The evaluation of the population of the MOEA in the 
Central Node is carried out in the Subordinate Nodes for 
every chromosome in its population. If possible, each 
Subordinate Node corresponds to a parallel computer or core 
processor, but if the number of Subordinate Nodes is higher 
than the number of parallel computers or core processors, 
more than one chromosome can be assigned to each parallel 
compute unit, so as to distribute the load evenly between all 
the computers.  

III. EXPERIMENTAL STUDY 

In order to analyze the practical behavior of the proposed 
methodology, we built several FMs in two real-world 
problems [33], [34], with different complexities (different 
number of variables and amount of data). 

Table I summarizes the different models used in the 
experimental study, where WMN [12] and CORN [11] 
methods are considered as reference, N being the granularity 
selected in all the variables. The MN methods are the 
proposed multi-objective models, where N is the maximum 
number of labels used by the algorithm. We also decided to 
test the use of the WM methodology in the Subordinate 
Nodes, which are denoted by MN-COR and MN-WM.  

 

TABLE I. 
METHODS CONSIDERED FOR COMPARISSON 

Ref. Method Description 
[12] WMN Wang & Mendel algorithm. N labels for 

each variable.  
 

[11] CORN COR algorithm with rule selection and N 
labels for each variable. 

 
- MN-WM Parallel multi-objective evolutionary 

methodology with Wang & Mendel. 
Variables will have up to N labels 

 
- MN-COR Parallel multi-objective evolutionary 

methodology with COR and rule selection. 
Variables will have up to N labels 

   

A. Applications Selected and Comparison Methodology 
To evaluate the goodness of the proposed approaches, two 

real-world problems with different complexities were 
considered: 
 An electrical distribution problem [33] that consists in 

estimating the maintenance costs of medium voltage 
lines in a town (1059 cases; 4 input continuous 
variables; one output variable). 

 The Ankara Weather dataset [34] that concerns the task 
of trying to predict the mean temperature in Ankara, 
Turkey (1609 cases; 9 input continuous variables; one 
output variable). 

 

 
 

Fig. 2.  Detailed global scheme 
 



 
 

 

We considered a 5-fold cross-validation model, i.e., 5 
random partitions of the data each with 20% (4 with 211 
examples, and one with 212 examples, for the electrical 
problem, and 4 with 322 examples, and one with 321 
examples for the Ankara Weather problem) and the 
combination of 4 of them (80%) as training, with the 
remaining one as test. We achieved a total of 30 trials for 
each model, by running the learning methods for each one of 
the data partitions 6 times with different seeds for the 
random number generator. We show the average values of 
the mean square error (MSE), as a standard performance 
measure (with expression (1)), 

, 

 

(1) 

where S denotes the fuzzy model selected, computed 
considering the most accurate solution from each Pareto 
obtained with the multi-objective algorithm. This measure 
uses a set of system evaluation data formed by P pairs of 
numerical data Zk =(xk,yk), k=1,..,P, with xk being the values 
of the input variables, and with yk being the corresponding 
values of the associated output variables.  

B. Questions Related to the Genetic Algorithms 
The multi-objective algorithm in the Central Node used 

several configurations depending on the maximum number 
of linguistic terms set up. When a maximum value of 5 
labels was selected in the electrical distribution problem, the 
population was fixed to 25 chromosomes and the number of 
generations was 30. On the other hand, when the maximum 
value of 9 labels for each variable was selected in the 
electrical distribution problem - just as when the maximum 
value of 4 labels for each variable was selected in the 
Ankara Weather problem - the population was fixed at 60 
chromosomes and the number of generations was 75. The 
crossover operator used was HUX-α with α = 0.5. The 
mutation operator used was the classic mutation operator 
with a probability of 0.2. The initial population was 
randomly initialized within the minimum to maximum range 
of values for the partitions. 

The COR method used in the Subordinate Nodes was set 
up with a population of 61 chromosomes and 300 
generations in all cases. The selection operator was based on 
Baker's stochastic universal sampling with elitism. The 
crossover operator used was the two point crossover with a 
probability of 0.6. The initial population was initialized with 
the N rules obtained by the WM method. 

To compare the results obtained we also used non-
parametric tests, according to the recommendations made in 
Demšar [35] which suggests a set of simple, safe and robust 
non-parametric tests for statistical comparisons of 
algorithms, one of which is the Wilcoxon signed-ranks test 
[36] we use in this work. It is analogous to the paired t-test 
in non-parametrical statistical procedures. 

 We used a server farm of 16 compute nodes based on 
dual CPU Intel Xeon 3 GHz each with 2 GB of RAM, 
interconnected with a Gigabit Ethernet network.   

C. Results and Analysis 
The results obtained are shown in Table II and III for the 

electrical distribution problem and in Table IV for the 
Ankara Weather, where MSE are the average MSE, for 
training and test, and Wil-test are the results of applying the 
Wilcoxon signed-ranks test [36] (with 95% confidence), 
with the following interpretation: * represents the best 
average result (control algorithm); + means that the best 
result has better performance than that of the corresponding 
row; and finally #R is the average number of rules.  

It is important to note that Tables II, III and IV only show 
the FRBS with the best accuracy of the Pareto front for each 
multi-objective model. Viewing these Tables we can point 
out the following: 
 The results obtained by the parallel evolutionary multi-

objective methodology MN-COR is in two cases 
noticeably lower in accuracy (Tables III and IV, 
viewing Wilcoxon signed ranks test results) as well as 
in the number of rules, than the reference models, WMN 
and CORN (these methods are placed as orientation: we 
know they cannot be compared because they are using 
different search spaces and computing resources). The 
MN-WM did not always achieve greater accuracy (Table 
IV), but the best accurate result it finds always has a 
significant reduction in the number of rules.  

 Specifically, viewing Table II, M5-COR does not show 
significant accuracy improvements over of M5-WM, but 
the number of rules decreases from 10 to 7. 

 Comparing Table II with III, that is, letting the algorithm 
use more linguistic terms (from a maximum of 5 in 
Table II to 9 in Table III), the accuracy is better, as was 
expected, but it is due to a significant increase in the 
number of rules generated based on more linguistic 
terms. 

 The behavior of the parallel evolutionary multi-objective 
with parallel evaluation methodology presented does not 
looks to be negatively affected by the larger data set, 
Ankara Weather, against the smaller electrical 
distribution one, regardless of being limited to a 
maximum of only 4 linguistic terms.  

 
TABLE II. 

 RESULTS OBTAINED FOR THE ELECTRICAL DISTRIBUTION APPLICATION 
WITH A MAXIMUM OF 5 LABELS 

Training Test 
Method 

MSE Wil-test MSE Wil-test 
#R 

WM5 56135.75 + 56359.42 + 65 

COR5 39652.82 + 41952.33 + 43 

M5-WM 20854.01 = 20826.72 = 10 

M5-COR 20505.56 * 20134.06 * 7 
 
 



 
 

 

TABLE III. 
 RESULTS OBTAINED FOR THE ELECTRICAL DISTRIBUTION APPLICATION 

WITH A MAXIMUM OF 9 LABELS 
Training Test 

Method 
MSE Wil-test MSE Wil-test 

#R 

WM9 32408.20 + 37549.06 + 124 

COR9 21318.85 + 24741.38 + 106 

M9-WM 19606.84 + 19874.90 + 21 

M9-COR 15334.73 * 17135.04 * 47 

 
TABLE IV. 

 RESULTS OBTAINED FOR THE ANKARA WEATHER APPLICATION WITH A 
MAXIMUM OF 4 LABELS 

Training Test 
Method 

MSE Wil-test MSE Wil-test 
#R 

WM4 8.135657 + 8.886438 + 264 

COR4 3.379250 + 3.986888 + 157.8 

M4-WM 4.086000 + 4.074000 + 23.2 

M4-COR 2.282000 * 3.002000 * 27.2 

 
Table V shows an example of the Pareto front obtained by 

the model M9-COR, (the best accurate model in Table III, but 
with a huge number of rules). Its columns show the MSE for 
training and test, the number of rules, and the chromosome 
achieved, that is, the number of linguistic terms found, 
where 0 means the variable has been removed. The first 4 
genes on the left of the chromosome belong to the 
antecedents and the last one on the right belongs to the 
consequent. The Pareto front shows 13 different FRBSs 
learned. We analyze these in the following way: 
 The most accurate FRBSs obtained are similar to the 

aforementioned mean value in Table III: very accurate 
but with a lot of rules.  

 It shows two solutions with 1 and 2 rules (at the bottom of 
the table) but with an enormous MSE, so these must be 
ignored.  

 Nevertheless, the solutions with 6 and 7 rules are quite 
interesting for the lower number of rules and the 
suitable MSE. Viewing the chromosome, the two first 
variables have been removed, and the granularity of the 
antecedents is not high, which is coherent with the low 
number of rules. 

 Many other solutions with different trade-offs have been 
found among the aforesaid. 

 
TABLE V.  

A PARETO FRONT EXAMPLE OBTAINED BY THE MODEL M9-COR 

M9-COR 

MSETRA MSETST #R Chromosome 

13965.67 15673.11 51 2 - 6 - 9 - 5 – 9 

15481.69 18184.36 39 4 - 0 - 7 - 5 – 9 

15898.54 19192.16 33 3 - 0 - 7 - 5 – 9 

16731.81 19859.63 26 2 - 2 - 7 - 5 – 9 

16740.49 18314.79 24 0 - 2 - 7 - 5 – 9 

17143.90 19095.34 23 0 - 0 - 7 - 5 – 9 

18489.08 17716.04 22 2 - 2 - 5 - 5 – 9 

18617.83 16398.43 17 0 - 0 - 5 - 5 – 9 

18691.96 19950.22 7 0 - 0 - 4 - 2 – 9 

19543.62 19214.96 6 0 - 0 - 4 - 2 – 5 

43636.01 49413.55 3 0 - 0 - 2 - 2 – 9 

298944.75 293681.41 2 0 - 2 - 0 - 0 – 6 

7337253.50 7167457.00 1 0 - 0 - 0 - 0 – 6 

 
Fig. 3., shows the Pareto front for training and test, for the 

electrical distribution problem, for M9-COR and M9-WM. 
Comparing both figures, they are similar, so there is no over-
fitting. 
 
 

 

 
(a) 

 
(b) 

Fig. 3.  Example of the Pareto front with WM and COR for the electrical distribution problem. (a) Training  (b) Test 
 



 
 

 

IV. CONCLUSIONS 

In the framework of the trade-off between accuracy and 
interpretability, the use of multi-objective algorithms gives a 
set of solutions with different levels of conciliation between 
both features. In this work we have proposed a simple 
evolutionary parallel multi-objective learning methodology 
where the number of labels and variable selection are learnt 
together with the rule base, exploiting the power of current 
clusters of computers or multi-core processor capabilities to 
achieve greater amounts of computational power. The 
parallel methodology proposed deals with more complex 
models with larger data sets, taking advantage of this type of 
computing resource, making the design process of linguistic 
fuzzy systems easier. The experimental study developed 
shows the good quality results of the proposal both for the 
accuracy and for the interpretability of the fuzzy systems 
learned. The authors continue testing the model with many 
other applications. 
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